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A formal total synthesis of racemic spatol is presented. The key steps involved a 4 + 3 cycloaddition of a halogenated cyclopentenyl cation

to cyclopentadiene and a quasi-Favorskii rearrangement.

The diterpene spatollf was isolated from the brown algae
Spatoglossum howléiilt is of interest not only because of

1, spatol

its relatively unique structure but also its biological activity.
It has been shown to possess ansgE@f 1.2 ug/mL against
fertilized sea urchin egg@.ytechinus pictus). It was also

active against human T242 melanoma and 224C astrocytoma{;l

cell lines in vitro with activity ranging from 1 to kg/mL.
A number of synthetic studies directed toward spatol and
other spatane diterpenes have appearétie synthetic

elegant approach of Salomon and co-workéfsin the
course of their work, they produced the intermediatehich
was carried on to spatol.

In an effort to more fully explore and exploit the-4 3
cycloaddition reaction chemistry of cyclic, halogenated
oxyallylic cations? we decided to pursue a formal synthesis
of 1 via a synthesis of.

The key steps in the synthesis were to be the generation
of the oxyallylic cation4 from 3 and the cycloaddition of
the former to cyclopentadiene to affoBd This would be
followed by a quasi-Favorskii rearrangement to produce the
cyclobutyl carboxaldehydé (Scheme 1). Though we had
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was oxidized to the carboxylic acitD in 88% yield using
Scheme 1 sodium chlorite®
lodolactonization of this acid proved interesting (Scheme

‘ 3).” Under kinetically controlled conditions,(INaHCGQ/
Cl 9 CsHs —_—
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Scheme 3

already demonstrated the feasibility of this approach by using HinCOpH I NaHCO3H,0 “0

a simple model systeththe key steps in the process were T R.2h 25% i ..J\\ +
worth exploring, since the number of examples of quasi- 10 11:12, 2.5:1

Favorskii rearrangements ofchloroketones is still small.

Furthermore, our intention to pursue a formal total synthesis

demanded a much more comprehensive approach to the
problem than had previously been undertaken.

We began our work with the commercially available lp MeCN, 0°C _ "'
dichlorocyclobutanon@. As shown in Scheme 2, ring ex- 24h, 75%

Scheme 2

H,0, rt, 2 h), two regioisomerd,1 and12, were obtained in
1. CHaNp, 0°C LAH Fi &H a ratio of 2.5:1 in favor .oﬂl. Semiempirical calculgtions
V
/3[ io cl

Gl 2 CaHe TEA ether (AM1)8 suggested that in fact2 was thermodynamically
o ol 74%, 10.4:1 5 OH more stable, and indeed, when the reaction was run under
7 8 conditions of thermodynamic contrdl2 was produced as

the sole product in 75% yield.
Processing of12 included radical dehalogenatiband

o”"’i, E@H — allylic oxidation with sodium chromatto afford the enone
76% (two steps) ©o 13 in 48% vyield (Scheme 4). The relative stereochemistry

9

6 88% 10 1.BugSnH__ 0 1HPaC
2. NagCrO4 ’/ 2. PhsP=CH,
(.0

48% 75%

Scheme 4
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pansion with diazomethane gave the corresponding cyclo- !
pentanone3. Because it decomposed relatively rapidly,

ketone3 was immediately reacted with cyclopentadiene and Me-.,

triethylamine in a 1:1 mixture of trifluoroethanol and ether e

to afford the 4+ 3 cycloaddition addudi as a 10.4:1 mixture Hoy r Pd/C HY ‘
110 \ |O

of endo/exo isomers in 74% yieldThe structural assign- 99%
ments were made on the basis of the chemical shift difference
between the olefinic protons in the two isomers. In the endo

He |
||O

isomer, the olefinic protons (6.28—6.23 ppm) are in the Me:, Me.,,

shielding cone of the carbonyl group and thus appear upfield 4 pigaL

of those in the exo isomer (6.65—6.56 ppm). 2 NHNHp . Huy/—\‘Me 94% Hi—\ 'Me
Reduction of5 with lithium aluminum hydride gave the 79%

alcohol 8. The stereochemical assignment of the carbinol 16/’0"'

carbon was based on precedéntreatment of8 with
potassium hydride in THF afforded the aldehy@lan 76%
yield, presumably through the intermedi@teThe aldehyde

of the system was rigorously defined at this point by an X-ray
@H o M. Rechatasakhon Ferahedron Let200L42. 0000 analysis of a single crystal df3. Hydrogenation 013 and
armata, M.; Rashatasakhon, etrahedron Le A2, . e . . . .
(5) The isomer ratio was determined Hy NMR of the crude reaction Wittig olgflnatlon prOduced the eXOCyCI'C alkehéin a gOOd
mixture. overall yield of 75%.
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We next wanted to set the stereochemistry of position 1 oxyallylic cation and the subsequent quasi-Favorskii re-
(spatol numbering) via hydrogenation, as others had done. arrangement. It offers a unique, nonphotocherfi¢aiethod
In the best possible case, the isomé&Ea and 15b were for producing cyclobutanes. The entire process proceeds in
obtained in virtually quantitative yield in a ratio of 6.6:1 using 9.8% overall yield over 14 steps from commercially available
a 10% palladium on carbon catalyst in ethyl acetate under starting material. We plan to attempt an asymmetric synthesis
H, at 145 psi. These isomers were not separable, at least byof spatol using similar chemistry. Details will be reported
flash chromatography, and we did our subsequent work onin due course.
the mixture. Reduction of the lactone irb with DIBAL
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