A 4 + **3 Cycloaddition Approach to the Synthesis of Spatol. A Formal Total Synthesis of Racemic Spatol**

Michael Harmata* and Paitoon Rashatasakhon

Department of Chemistry, University of Missouri-Columbia, *Columbia, Missouri 65211*

harmatam@missouri.edu

Received May 30, 2001

ABSTRACT

A formal total synthesis of racemic spatol is presented. The key steps involved a 4 + **3 cycloaddition of a halogenated cyclopentenyl cation to cyclopentadiene and a quasi-Favorskii rearrangement.**

The diterpene spatol (**1**) was isolated from the brown algae Spatoglossum howleii.¹ It is of interest not only because of

its relatively unique structure but also its biological activity. It has been shown to possess an ED_{50} of 1.2 μ g/mL against fertilized sea urchin eggs *(Lytechinus pictus*). It was also active against human T242 melanoma and 224C astrocytoma cell lines in vitro with activity ranging from 1 to 5 *µ*g/mL.

A number of synthetic studies directed toward spatol and other spatane diterpenes have appeared.2 The synthetic challenges include the stereoselective preparation of the $cis, anti, cis$ -tricyclo $[5.3.0.0^{2.6}]$ decane skeleton as well as the labile diepoxide functionality. Of the known syntheses to spatol, one which particularly attracted our attention was the elegant approach of Salomon and co-workers.2a,h In the course of their work, they produced the intermediate **2**, which was carried on to spatol.

ORGANIC LETTERS

2001 Vol. 3, No. 16 ²⁵³³-**²⁵³⁵**

In an effort to more fully explore and exploit the $4 + 3$ cycloaddition reaction chemistry of cyclic, halogenated oxyallylic cations, 3 we decided to pursue a formal synthesis of **1** via a synthesis of **2**.

The key steps in the synthesis were to be the generation of the oxyallylic cation **4** from **3** and the cycloaddition of the former to cyclopentadiene to afford **5**. This would be followed by a quasi-Favorskii rearrangement to produce the cyclobutyl carboxaldehyde **6** (Scheme 1). Though we had

^{(1) (}a) Gerwick, W. H.; Fenical, W.; Sultanbawa, M. U. S. *J. Org. Chem.* **¹⁹⁸¹**, *⁴⁶*, 2233-41. (b) Gerwick, W. H.; Fenical, W. *J. Org. Chem.* **¹⁹⁸³**, *⁴⁸*, 3325-9.

⁽²⁾ Approaches to the spatane system: (a) Salomon, R. G.; Sachinvala, N. D.; Roy, S.; Basu, B.; Raychaudhuri, S. R.; Miller, D. B.; Sharma, R. B. *J. Am. Chem. Soc.* **¹⁹⁹¹**, *¹¹³*, 3085-95. (b) Miesch, M.; Cotte, A.; Franck-Neumann, M. *Tetrahedron Lett.* **¹⁹⁹³**, *³⁴*, 8085-6. (c) Kowalczyk, B. A.; Smith, T. C.; Dauben, W. G. *J. Org. Chem.* **¹⁹⁹⁸**, *⁶³*, 1379-1389. Total syntheses of spatanes: (d) Salomon, R. G.; Sachinvala, N. D.; Raychaudhuri, S. R.; Miller, D. B. *J. Am. Chem. Soc.* **¹⁹⁸⁴**, *¹⁰⁶*, 2211- 13. (e) Tanaka, M.; Tomioka, K.; Koga, K. *Tetrahedron Lett.* **1985**, *26*, ³⁰³⁵-8. (f) Tanaka, M.; Tomioka, K.; Koga, K. *Tetrahedron Lett*. **¹⁹⁸⁵**, *²⁶*, 6109-12. (g) Dauben, W. G.; Kowalczyk, B. A. *Tetrahedron Lett.* **¹⁹⁹⁰**, *³¹*, 635-8. (h) Salomon, R. G.; Basu, B.; Roy, S.; Sachinvala, N. D. *J. Am. Chem. Soc.* **¹⁹⁹¹**, *¹¹³*, 3096-106. (i) Miesch, M.; Cotte´, A.; Franck-Neumann, M. *Tetrahedron Lett*. **¹⁹⁹⁴**, *³⁵*, 7021-2. (j) Tanaka, M.; Tomioka, K.; Koga, K. *Tetrahedron* **¹⁹⁹⁴**, *⁵⁰*, 12829-42.

^{(3) (}a) Harmata, M.; Shao, L.; Kurti, L.; Abeywardane, A. *Tetrahedron Lett.* **¹⁹⁹⁹**, *⁴⁰*, 1075-1078. (b) Harmata, M.; Shao, L. *Synthesis* **¹⁹⁹⁹**, ¹⁵³⁴-1540.

already demonstrated the feasibility of this approach by using a simple model system, 4 the key steps in the process were worth exploring, since the number of examples of quasi-Favorskii rearrangements of α -chloroketones is still small. Furthermore, our intention to pursue a formal total synthesis demanded a much more comprehensive approach to the problem than had previously been undertaken.

We began our work with the commercially available dichlorocyclobutanone **7**. As shown in Scheme 2, ring ex-

pansion with diazomethane gave the corresponding cyclopentanone **3**. Because it decomposed relatively rapidly, ketone **3** was immediately reacted with cyclopentadiene and triethylamine in a 1:1 mixture of trifluoroethanol and ether to afford the $4 + 3$ cycloaddition adduct **5** as a 10.4:1 mixture of endo/exo isomers in 74% yield.⁵ The structural assignments were made on the basis of the chemical shift difference between the olefinic protons in the two isomers. In the endo isomer, the olefinic protons $(6.28-6.23$ ppm) are in the shielding cone of the carbonyl group and thus appear upfield of those in the exo isomer $(6.65-6.56$ ppm).

Reduction of **5** with lithium aluminum hydride gave the alcohol **8**. The stereochemical assignment of the carbinol carbon was based on precedent.4 Treatment of **8** with potassium hydride in THF afforded the aldehyde **6** in 76% yield, presumably through the intermediate **9**. The aldehyde was oxidized to the carboxylic acid **10** in 88% yield using sodium chlorite.⁶

Iodolactonization of this acid proved interesting (Scheme 3).⁷ Under kinetically controlled conditions $(I_2, \text{NaHCO}_3/$

H2O, rt, 2 h), two regioisomers, **11** and **12**, were obtained in a ratio of 2.5:1 in favor of **11**. Semiempirical calculations (AM1)8 suggested that in fact **12** was thermodynamically more stable, and indeed, when the reaction was run under conditions of thermodynamic control, **12** was produced as the sole product in 75% yield.

Processing of 12 included radical dehalogenation⁹ and allylic oxidation with sodium chromate¹⁰ to afford the enone **13** in 48% yield (Scheme 4). The relative stereochemistry

of the system was rigorously defined at this point by an X-ray analysis of a single crystal of **13**. Hydrogenation of **13** and Wittig olefination produced the exocyclic alkene **14** in a good overall yield of 75%.

⁽⁴⁾ Harmata, M.; Rashatasakhon, P. *Tetrahedron Lett*. **2001**, *42*, 0000. (5) The isomer ratio was determined by 1H NMR of the crude reaction mixture.

We next wanted to set the stereochemistry of position 1 (spatol numbering) via hydrogenation, as others had done.2 In the best possible case, the isomers **15a** and **15b** were obtained in virtually quantitative yield in a ratio of 6.6:1 using a 10% palladium on carbon catalyst in ethyl acetate under $H₂$ at 145 psi. These isomers were not separable, at least by flash chromatography, and we did our subsequent work on the mixture. Reduction of the lactone in **15** with DIBAL followed by a Wolff-Kishner reaction afforded compound **16** in 79% yield. Simple PCC oxidation produced ketone **2**. The major diastereomer was isolated by low-temperature recrystallization, the procedure reported by Salomon.^{2a} The proton and carbon NMR data for ketone **2** matched those reported in the literature.^{2d}

In conclusion, we have demonstrated an application of the ⁴ + 3 cycloaddition reaction of a halogenated, cyclopentenyl oxyallylic cation and the subsequent quasi-Favorskii rearrangement. It offers a unique, nonphotochemical $2^{b,i}$ method for producing cyclobutanes. The entire process proceeds in 9.8% overall yield over 14 steps from commercially available starting material. We plan to attempt an asymmetric synthesis of spatol using similar chemistry. Details will be reported in due course.

Acknowledgment. This work was supported by the National Science Foundation, to whom we are grateful. We thank the National Science Foundation for partial support of the NMR (PCM-8115599) facility at the University of Missouri-Columbia and for partial funding for the purchase of a 500 MHz spectrometer (CHE-89-08304). Thanks to Dr. Charles L. Barnes for acquisition of X-ray data.

Supporting Information Available: Experimental procedures, spectra for all intermediates, and X-ray data for **10**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL016200C

⁽⁶⁾ Lindgren, B. P.; Nilsson, T. *Acta Chem. Scand*. **¹⁹⁷³**, *²⁷*, 888- 890. (7) Gonzalez, F. B.; Bartlett, P. A. Org. Synth. 1986, 64, 175–81.

⁽⁷⁾ Gonzalez, F. B.; Bartlett, P. A. *Org. Synth*. **¹⁹⁸⁶**, *⁶⁴*, 175-81.

⁽⁸⁾ ΔH_f (11) = -1.84 kcal/mol; ΔH_f (12) = -5.33 kcal/mol.
(9) Kuivila H G *Synthesis* 1970 499–509

⁽⁹⁾ Kuivila, H. G. *Synthesis* **¹⁹⁷⁰**, 499-509.

⁽¹⁰⁾ Paquette, L. A.; Roberts, R. A.; Drtina, G. J. *J. Am. Chem. Soc*. **¹⁹⁸⁴**, *¹⁰⁶*, 6690-6693.